If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9t^2+4t=0
a = -9; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-9)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-9}=\frac{-8}{-18} =4/9 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-9}=\frac{0}{-18} =0 $
| 6+3x=4x+7 | | (6x+6)°=(9x-6)° | | (6x+6)°=(9x-6)° | | (6x+6)°=(9x-6)° | | (6x+6)°=(9x-6)° | | (6x+6)°=(9x-6)° | | (6x+6)°=(9x-6)° | | (8x-10)°=(7x+3)° | | (8x-10)°=(7x+3)° | | (8x-10)°=(7x+3)° | | 3y-8=21y+28 | | 77=14+x | | 77=14+x | | 7x=100000 | | X^2-67x+270=0 | | 2x2x2x−18x•18x+40x=0 | | g+1.5=18 | | 2x3−18x2+40x=0 | | 11x+6=10x+8 | | 1/2(x-14)=1/3(x-12) | | 2x¾=18 | | -1+19x=18x+3 | | (-3,5)m=-4 | | Z=1/Z-2i | | 8+7b=41 | | 2x²=25 | | X(2x)=5² | | x^2+16x+200=0 | | 36/54=x/34 | | 9x÷33+6=9 | | 2c/3-6=3/4c+2 | | 3=(9-8)5x+9 |